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Abstract—This paper proposes a new acoustic source localiza-
tion scheme, called Probabilistic Cutting Method (PCM), with
randomly deployed smartphones which equipped with known
location and direction dual-microphones. Instead of using the
value of TDOA (Time Difference Of Arrival), we just use binary
information (0/1) and probability to convert the localization
problem into plane cutting issues. We can easily come up with
the Basic Cutting Method (BCM), but it may appear empty
set when error (location error, angle error or error anchors)
occurs. PCM can effectively avoid the problem along with lower
positioning error. When comparing PCM with TDOA and BCM
in different aspects, simulation evaluation results indicate that
PCM algorithm achieves highly robustness and accuracy.

Index Terms—Acoustic Source Localization, Binary Informa-
tion, Probability

I. INTRODUCTION

The growing scale and importance of computer technology

has driven the wide utilization of acoustic source localization

techniques in many occasions including locating speakers

in a room [1], shooter localization [2], network routing,

surveillance [3], target tracking [4], and emergency response.

Most existing localization technologies based on microphone

arrays usually have problems of low computing capacity, high

system costs, and low positioning accuracy in the presence of

reverberation environment.

The traditional microphone array-based localization systems

have been thoroughly studied in the literature. Despite their

obvious advantages over single-microphone systems, tradi-

tional microphone array-based localization systems have their

limitations because they usually sample the sound fields only

locally, typically at a relatively large distance from the sound

source(s). Furthermore, due to the constraints of space and

energy, especially in miniature and portable devices, the array

is often limited in physical size and processing power, what’s

more, it demands strict GCC (Generalized Cross-Correlation)

algorithm [5], [6].

Given these limitations, we believe there is an opportunity to

propose a time-synchronized method, in this paper, we explore

to locate a single acoustic source, and it makes three major

contributions, which can be described as follows:

Naigao Jin is the corresponding author in Dalian University of Technology.

(1) Synchronization free. We adopt smartphones which have

dual time-synchronized microphones to remove the time-

synchronized requirements of conventional localization

methods.

(2) Low costs, easy deployment. We implement a simple GCC

algorithm to weaken the demand of hardware to compute

the value of TDOA with randomly deployed smartphones,

by leveraging binary information and probability to locate

the target.

(3) High robustness and accuracy. Simulation results indicate

our algorithm has strong robustness and high accuracy

when location error, angle error and error anchors exist.

The rest of this paper is organized as follows: Related work

is reviewed in Section II. Section III presents the system

overview. Section IV states a simple method, but it may

involve empty set. In Section V, we introduce the detailed

design of PCM algorithm. The simulation of the system is

evaluated in Section VI. Finally, Section VII summarizes the

conclusions and future works.

II. RELATED WORK

Based on whether to calculate the distance between n-

odes, the current localization methods can be classified into

two kinds: range-based and range-free [7]–[9]. Range-based

method includes RSSI (Received signal strength indicator)

[10]–[12], TOA (Time of arrival) [13], [14], TDOA (Time

difference of arrival) [15], [16]. Range-free method can be

implemented by geometric methods, e.g., MDS (Multi dimen-

sional scaling) [17], DV-Hop (Distance vector-hop) [18].

Acoustic source localization is a well-studied problem. The

existing methods can be divided into four major categories:

RSS (Energy-based/received signal strength) [19], [20], AOA

(Angle of arrival) [21], TOA [22], and TDOA [16]. The RSS

method does not require time synchronization, however, it is

very sensitive to channel conditions. AOA method need to be

equipped with at least two microphones on each node, as well

as complicated microphone array processing techniques, and

demands high computational complexity. The TOA algorithm

employs the information of accurate signal transmission time

from source to the receiver; what’s more, it must pay attention

to time synchronization among participating nodes. Compared
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to TOA, the TDOA model considers the difference of the ar-

rival times between the two clock-synchronized microphones,

without knowing the starting time of the acoustic source.

A high accuracy acoustic ranging system using COTS

(commercial-off-the-shelf) mobile devices, like cell phones

and PDAs, is designed and implemented [15]. Liu et al. [23]

propose an indoor localization ecosystem Guoguo consisting

of an anchor network via smartphones. Without cooperation

of the object and much knowledge about the environment, Fu

et al. [24] present a novel value-based estimation algorithm

named Orthogonal Cut (OC) for event localization. Both our

work and OC algorithm can locate the acoustic source using

plane cutting, but they are different mainly in three aspects:

(i) Our algorithm is sufficient to locate the target even the

smartphones are deployed randomly, for OC, however, it is

suitable for special network topology, and almost impossible

with randomly placed sensors. (ii) We use dual-microphone

smartphones to reach non-synchronization, yet OC demands

for synchronized sampling intervals for the value-based esti-

mation. (iii) The computing complexity of our algorithm is

O(n), while that of OC is generally between n2 and n3, if the

number of sensors is n.

III. SYSTEM OVERVIEW

In this section, we focus mainly on the system overview

of our scheme, which aims at locating an unknown acoustic

source. Let us consider that an 2D localization space con-

sisting of distribution of N known sensors (anchors), each

accommodating 2 microphones, and the distance between

the two microphones are fixed. Fig. 1 shows the layout of

our problem, which means we deploy lots of smartphones

in large scale. The N anchors can be defined as S, and

S = {s1, · · · , si, · · · , sN}, where si = {node2i−1, node2i},

along with any node nodei has its location coordinates denoted

as [xi, yi], with the direction of αi. In the presence of

reverberations, for ith smartphone, if we draw a perpendicular

bisector to the line joining of its two microphones, it can divide

the localization space into two regions, we can use a matrix

Binary data to store the corresponding binary information

about the target to the anchors, and it can be defined as

Binary data(i) =

{
1 if TDOA(i) ≥ 0,
0 if TDOA(i) < 0,

(1)

where 1 ≤ i ≤ N , TDOA(i) is the value of TDOA for the

target to the ith anchor.

However, when the location and direction of microphones

are known, just using the information about microphones to

locate the target is very difficult. A simple method named

Basic Cutting Method can be easily thought out, but it may

not locate in some cases, we will introduce it in next section.

Microphone 1

Microphone 2

: Anchor Node

: Acoustic Source

Fig. 1. System overview. A sensor network formed by randomly deployed
smartphones equipped with known location and direction microphones to
locate the acoustic source. Input: ([xi, yi], αi, Binary data(i) ∈ {0, 1})
Output: The target’s location Lt.

IV. BASIC CUTTING METHOD

In fairly reverberant conditions, we can use the binary

information of the target to cut the plane, discard the blocks

that do not conform the requirements, then we can determine

the general direction of the target. For ith node, we can define

R(i) as the approximate range of the target according the

binary information about the anchor,

R(i) = {xi|Binary data(xi), xi ∈ R} (2)

where R represents the area of test room.

A

B

C

(a) Three anchors and one target.

A

B

C

(b) R(A): The range which includes
the target by using A to cut the plane.

A

B

C

(c) R(A)∩R(B): Using A and B to
cut the plane, reserving the overlap.

A

B

C

(d) R(A)∩R(B)∩R(C). Using A,
B and C to cut the plane, reserving
the overlap.

Fig. 2. Example of using Basic Cutting Method to locate the target with three
anchors. The direction of arrows filling with different lines are the general
range. The overlap of 2(d) is the final range.

As shown in Fig. 2, we have three anchors A, B and C in

the test room, once using the binary information of A to cut the

plane, we reserve the plane when binary information equals to

1, and filling the direction of arrow with lines in Fig. 2(b), so

we can get the range named R(A) including the target. After

repeating the process shown in Fig. 2(c) and Fig. 2(d), we
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can get R(A) ∩ R(B) ∩ R(C) represented by the overlap as

the final cell of target, by taking the geometric center of the

overlap to locate the target. From Fig. 2(a) to Fig. 2(d) can

thoroughly describe the process of the Basic Cutting Method

(BCM ).

Although BCM may get the location of the target with the

binary information for the target to the given anchors. When

error anchors come, which means the anchors mistake the right

side for the wrong one, it is easily prone to lose available

information when failed to judge. But for location error or

angle error of anchors, it differs in different cases. Fig. 3 shows

a little angle error and location error of anchors that we can

also locate the target.

A

B

C

C

(a) Angle error α of anchor

A

B

C

C

(b) Location error l1 of anchor

Fig. 3. Case for a little location error and angle error that won’t lead to the
empty set with Basic Cutting Method.

Fig. 4 displays some cases leading to empty set, say, when

we fail to locate, we can’t get a range which includes the

target. As shown in Fig. 4(a), when there exist no error, we

can easily know the target is below the perpendicular bisector

of C. But if C has angle error shown as Cβ , and when we

use it to cut the plane, we still think the target is below the

perpendicular bisector of Cβ , this can lead to R(A)∩R(B)∩
R(Cβ) = ∅, so we will fail to locate. In Fig. 4(b), once C
occurs location error to become Cl2 , just like Fig. 4(a), we also

suppose the target is below the perpendicular bisector of Cl2 ,

after calling Incise(), we will get R(A)∩R(B)∩R(Cl2) = ∅
which dues to empty set.

A

B

C

C

(a) Angle error β of anchor

A

B

C

C

(b) Location error l2 of anchor

Fig. 4. Case for errors lead to empty set (R(A) ∩ R(B) ∩ R(C) = ∅) for
the Basic Cutting Method.

V. PROBABILISTIC CUTTING METHOD

After a reasonable amount of experiments and discussion,

we have exploit a method that leverages probability to solve

the problem of empty set related to BCM, which is called

Probabilistic Cutting Method (PCM). We also cut the plane

and reserve all the region with a special set of probabilities

P = {p1, · · · , pi, · · · , pN} to judge the most likely infor-

mation of the two microphone nodes. As shown in Fig. 5,

according to (3), the probability of the target to the right

side of the anchor C is p, then the left is 1 − p. When all

the anchors are defined with probability, then we can use

the weighted probabilities to locate the target. According the

definition of probability, p ∈ [0, 1]. For the probabilistic theory

in our algorithm, if p ≤ 0.5, we can’t obtain more relatively

accuracy. So p > 0.5 should be guaranteed to PCM.

1-p

p
A

B

C

Fig. 5. Example of Probabilistic Cutting Method using probability p to cut
the plane.

pi =

{
p if R(i) �= ∅,
1− p if R(i) = ∅, (3)

where p is the probability that we choose for PCM.

In real situation, we can’t avoid reverberation and noise, so

we can’t get very accurate acoustic signal. For SNR (signal-

to-noise ratio) can stand for the quality of the acoustic signal,

we can assume that SNR is consistent with p. The formula (4)

shows the definition of SNR where S/N is the energy ratio of

acoustic signal and the noise. If we compute the energy of the

sound when there exist no sound, we will get SNR = 0dB.

If there exist some sound, then the energy of the sound will

enlarge, the value of SNR will increase. Using mathematical

analysis, we get the formula (5)

SNR = 10 ∗ lg(S/N) (4)

p(SNR) = 0.5 +
arctan(0.1 ∗ SNR)

π
, (5)

where p(SNR) is a function about probability and SNR.

Fig. 6 shows the relationship between probability p and SNR,

from Fig.6, we can know, when SNR increases, p becomes

bigger and bigger, infinitely close to 1.

In probabilistic theory and statistics, the expected value

of a discrete random variable is the result of a random test

which is repeated several times under the same opportunities

to calculate the average equivalent value called expectation.

With no loss of generality, we can use expectation E(p) to

determine the appropriate probability p for PCM. And we can
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SNR (dB)

p

Fig. 6. The probability p for PCM versus SNR.

get

E(p) =

∫ SNRmax

SNRmin
p(SNR) · d(SNR)

SNRmax − SNRmin
, (6)

where SNRmin is the lower bound and SNRmax the upper

bound of SNR. In pursuit of the most suitable value, we

evaluate a reasonable amount of experiments and find it will

achieve the best positioning accuracy performance when the

value of SNR is between 10dB and 20dB, from the formula 6

we will get E(p) = 0.81, so we use p = 0.81 for all anchors

to cut the plane in this paper.

Algorithm 1: The PCM Algorithm

Input: Probability to cut the plane: p

The discrete grid point set of the room: R

0/1 information set about the target: Binary data

Output: Estimated location: Lt

1 Initialize the cumulative probability set P total ← 0;

2 for Each anchor j ∈ N do
3 if the target is on the exact side of j:

Binary data(j) == 1 then
4 R(j) ← p;

5 end
6 else
7 R(j) ← 1− p;

8 end
9 Cumulate the probability stored in P total;

10 end
11 Lt=Taking target(P total, R);

12 return the estimated position: Lt;

Algorithm 1 defines a cutting function from Step 1 to 10,

whose function is to narrow the range of the target with

the given condition. If the target is in the exact side of the

target, we reserve the range with the probability p, then the

probability of the target in the opposite side is 1−p. By using

recursive algorithm, after using all anchors to cut the plane,

we can finally get an approximate range of the target which

is represented by R, then we can call a function to compute

the coordinates of the target shown in line 11.

In line 11, we define a weighted probability set Weight,
whose definition is showed in equation (7) and it cumulates

the probability of all points in the room. By using recursion,

we can get the position of the target when it satisfies the

equation (8). The Fig. 7 shows the relationship between the

weighted probability and the discrete point set in the room,

the red region is the final range of the target, we finally take

the peak of the probability containing the range of the target.

Weight(i) =

N∑
i=1

pi. (7)

Lt = argmax
i∈N

Weight(i). (8)

Fig. 7. The figure of weighted probability in discrete grid point usingPCM ,
the deep red color is the target range we get when we take the peak of
probability.

The complexity analysis of the proposed method depends

mainly on computation, for PCM uses the binary information

to cut the plane, if we deploy n anchors in the field, the plane

will be cut by n times, so the computational complexity is

O(n).

VI. SIMULATION EVALUATION

In this section, we try to simulate our acoustic source

localization algorithm with TDOA method and BCM using

MATLAB in a reverberant room. In the simulation, we ran-

domly generate a lot of smartphones in a 10 × 10 m area. And

it is organized in an acquisitions that the position and angle

of all anchors are assumed to be known in advance. To reduce

the impact of the uncertainty of position and orientation to

smartphones on the accuracy of localization, we add a certain

amount of angle error and location error in all the simulations.

As mentioned in Section V, we choose 0.81 for the probability

to cut the plane . All the statistics are running 1000 times

for high confidence, and reported by CDF figure. Table 1

illustrates the default simulation setup parameters.

A. Comparison with TDOA

We try to compare PCM and BCM with common acoustic

localization method TDOA. TDOA can use any group of
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TABLE I
DEFAULT CONFIGURATION PARAMETER

Parameter Description

Field Area 10m ×10m

Number of Anchors 40

Location Error Range 0.10m

Angle Error Range 5 degrees

Random-Seed Loop 1000 times

three microphones to estimate the target’s position. In the

simulation, all parameters remain default, we sort the RMSE

(root mean square error) results of TDOA by ascend and

choose the 20th percentile measurements in comparison with

PCM shown in Fig. 8. As expected, PCM and BCM perform

better than TDOA, which dues to the fact that errors can be

additive for all anchors used for TDOA.

0 0.5 1 1.5 2 2.5 3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Positioning error(m)

C
D

F

 TDOA
 BCM
 PCM

Fig. 8. Comparison with BCM and TDOA.

B. BCM vs PCM

1) Impact of the number of anchors: In this experiment,

we investigate the localization error and number of anchors

with different number of anchors. Since the two methods aim

to narrow the range of the target by processing all anchors,

we can except that with more anchors, the whole area will be

divided into more small parts, so more accurate localization

estimation could be achieved by PCM. As shown in Fig. 9(a)

and Fig. 9(b), we choose 20, 40, 60 anchors to express the CDF

and positioning error for the two methods. With the number

of anchors increases, for BCM, not all cases can locate the

target for the curve can’t reach 100%, with the basis on BCM
is to discard the plane which does not meet the requirement,

so when the number of anchors increases, more parts will

be abandoned, so the chance for empty set grows. Fig. 9(b)

demonstrates that the localization error rate decreases as the

number of anchors increases for PCM and we can always get

the positioning result as the curve can reach 100%, because

it reserves regoins that does not meet the requirements with a

certain probability instead of discarding them simply, in order

to avoid the empty set.

2) Impact of the number of error anchors: For BCM
discards the plane, we can assume that it is sensitive to the

0 0.5 1 1.5 2 2.5 3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Positioning error(m)

C
D

F

 Num=20
 Num=40
 Num=60

(a) Basic Cutting Method

0 0.5 1 1.5 2 2.5 3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Positioning error(m)

C
D

F

 Num=20
 Num=40
 Num=60

(b) Probabilistic Cutting Method

Fig. 9. Impact of the number of anchors for the two methods.

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Positioning error(m)

C
D

F

 Error_num=1
 Error_num=3
 Error_num=5

Fig. 10. Impact of the number of error anchors.

anchor error. In this experiment, we try to simulate PCM by

using different number of error anchors, which give the wrong

binary information. Since the number of error anchors can

affect the localization accuracy, we image that the more error

anchors exist, the bigger the localization error is. And Fig. 10

confirms our imagination, it indicates that as the number of

error anchors increases, the positioning error of PCM is much

smaller than that of BCM. It shows although error anchors

appear, PCM can awalys get positioning result, so it achieves

fault tolerance.

3) Impact of the angle error: In the experiment, we

perform the impact of the angle error of anchors for BCM and

PCM. As the direction of anchors are uncertain, we assume

the angle error may influence the localization accuracy. The

Fig. 11 confirms it. As shown in Fig. 11, the positioning errors

for the two methods are rising as angle errors of anchors

increase. So we have sufficient confidence to conclude that

angle error of anchors will influence the localization accuracy.

In particular, in Fig. 11(a), when angle errors exist, no more

than 90% anchors can locate the target for BCM and about

90% anchors can reach 1m positioning error when the angle

error is 5 degrees. If the angle error is 25 degrees, nearly 20%
anchors can get 1.5m positioning error. In Fig. 11(b), when

angle errors increase, the positioning error for PCM is much

more smaller than that of BCM as shown in Fig. 11(a), so

the localization accuracy of PCM is much higher than that of

BCM in the presence of angle error.

4) Impact of the location error: In this experiment, we try
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 Angle=15
 Angle=25

(a) Basic Cutting Method
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 Angle=5
 Angle=15
 Angle=25

(b) Probabilistic Cutting Method

Fig. 11. Impact of the angle error.

to compare BCM with PCM using location error of anchors.

In Fig. 12, we choose the location error with 0.1m, 0.5m and

0.9m to test the positioning performance for the two methods.

Fig. 12 indicates the location error of anchors has an effect

on the positioning results. With greater location errors, the

localization accuracy of PCM is higher than BCM. For BCM,

the positioning error changes obviously as location error in-

creases in Fig. 12(a). However, as demonstrated in Fig. 12(b),

the positioning error varies little, which demonstrates PCM is

more robust than BCM.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
0
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0.2

0.3
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0.5

0.6

0.7

0.8

0.9

1

Positioning error(m)

C
D

F

 location=0.1
 location=0.5
 location=0.9

(a) Basic Cutting Method

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
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0.9

1

Positioning error(m)

C
D

F

 location=0.1
 location=0.5
 location=0.9

(b) Probabilistic Cutting Method

Fig. 12. Impact of the location error.

VII. CONCLUSIONS AND FUTURE WORK

This paper presents PCM, a novel acoustic source localiza-

tion scheme that uses dual-microphone smartphones. We can

convert the localization problem into plane cutting issues by

using probability and binary information to locate the target.

A simple method named BCM can locate the target, but it can

arise empty set problem, however, PCM can effectively solve

it. Simulation evaluation results demonstrate that the PCM is

much more accurate than TDOA and BCM, besides, PCM
achieves fault tolerance, good accuracy and great flexibility

with low cost when errors exist.

As ongoing and future work, we hope to solve the indoor

localization problem without knowing anchors’ location infor-

mation in advance, what’s more, we also try to locate multiple

targets.
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